Review of 3.0 Methodology

Summary of Key Findings and Recommendations

presented to

NC Joint Transportation Appropriations Committee

presented by

Cambridge Systematics, Inc.

Joe Guerre

Approach

Overall Themes

- Very mature process that represents significant time and numerous best practices
- From outside perspective, we've identified some inconsistencies and relatively easy options to address them
 - » Mathematical inconsistencies
 - » Terminology inconsistencies
- Significant biases by project type don't appear to be an issue

Recommendations within and Across Modes

Biggest Statistical Issues Across Modes

• Low ranges and disproportional weighting

Disproportionate Impact of Criteria on Quantitative Scores Statewide Rail Projects							
Statistic	Benefit Cost	Economic	Capacity Congestion	Safety	Accessibility	Connectivity	Mobility
Weight	20%	10%	15%	15%	10%	10%	20%
Percent of Score Accounted for by Criteria	5%	2%	9%	18%	3%	8%	54%

Global recommendation - scale all criteria from 0-100 consistently

Recommendation – Grade all Projects on a Curve

Example – Highway Congestion

P3.0 — Recommended scaling based on relative distribution

Implications of Grading on a Curve

- It will be possible for a project to get a total score of 100
- There will be a mixture of low, medium and high scoring projects
- Results will more closely reflect the weights assigned to each criterion
- Consistent scaling will help with prioritization within modes and prioritization across modes

Other Global Recommendations

- Improve consistency of terms between modes
- When possible, evaluate projects based on expected benefit rather than current conditions
- Calculate cost-effectiveness when benefit-cost is not possible

$$Cost - Effectiveness = \frac{non - monitized\ benifits}{project\ cost}$$

Introduce a new Financial Leverage criterion

$$Financial\ Leverage = \frac{non - NCDOT\ project\ costs}{NCDOT\ project\ costs}$$

Other Global Recommendations

It's not mathematically possible to definitively quantify the differences between apples and oranges.

But we make these types of decisions every day.

- Cross-modal recommendations
 - » Continue to use mode-specific criteria rather than criteria that are applicable across modes
 - » Ensure transparency when evaluating priorities across modes

Highway Recommendations

Highway Recommendations

- H.I Improve travel time calculation
- H.2 Update the values of time used in B/C
- H.3 Include additional benefits in B/C
- H.4 Rename B/C to "Leveraged B/C" and revise calculation
- H.5 Use seasonal traffic volumes for Congestion and B/C
- H.6 Improve Congestion calculation to capture project impacts
- H.7 Improve Safety calculation to capture project impacts
- H.8 Define objective of connectivity/accessibility

